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ABSTRACT

In response to the Challenger accident, NASA has expanded its risk assessment
studies from a completely qualitative Failure Modes and Effects Analysis/Critical
Items Lists (FMEA/CIL) to include some quantitative investigations like Probability
Risk Assessment (PRA).

Dr. Richard Heydorn (Reliability) presented lectures on quantitative methods to the
Vehicle Reliability Branch at the request of branch chief, Malcolm Himel. As an
outgrowth, the Extended Duration Orbiter - Weakest Link study is being developed.
Three avionics subsystems and one with mechanical components, the freon coolant
loop, have been identified as posing potential problems to keeping the Orbiter in
space for long periods of time. The intent of the study is to devise a standard
methodology for constructing system reliability diagrams and identifying what data
is needed and/or potentially available. The data will then be utilized in Bayesian
probability models to estimate reliabilities and consequently identify any significant
problem subsystems.

Classical statistical methods are not suitable for many NASA problems. At NASA,
data records are often sparse, incomplete or in a form not amenable to classical
confidence estimates. Also, since problem-identification-problem-correction s
employed throughout the operating lifetime of many NASA systems, the usefulness
of failure history data is greatly compromised. Bayesian analysis addresses such
concerns since it allows for the insertion of informed opinions instead of/or in
addition to observational data on failures.

Our summer work generalized some of Dr. Heydorn’s results for systems with a
constant failure rate (exponential model) that is generally applicable to avionic
systems, to the case of a variable failure rate (Weibull model) which contains the
exponential as a special case. The Weibull model applies to reliability systems with
burn in and/or wear out stages including most mechanical systems.

In the exponential case a closed form was obtained for the Bayesian estimate of the
reliability function of a single component. The reliability of a system can then be
evaluated using the rules of probability. With these estimators it is also possible to
calculate the probability that the true reliability of a component lies within a certain
interval and estimate the probability that the reliability of a system lies in a certain
interval.

Using Bayesian ideas it now becomes possible to handle situations which the classical
analysis could not, namely: (1) how to handle problems where no failure data has
been observed over a period of time and (2) how to incorporate expert opinionsinto
the probability calculations along with the data on failures.

In the more general Weibull (variable failure rate) model we have obtained a
Bayesian estimator for the reliability which reduces to a closed form for special cases.
In these cases the rest of the Bayesian analysis can be pursued.

Further investigations will consider the numerical evaluation of the Weibull Bayesian
estimator for reliability in the general case. Bayesian estimates for the reliability of
single components and systems, and probability statements similar to those
described for the exponential model may then be pursued. The results can then be
applied to the freon coolant subsystem of the Extended Duration Orbiter - Weakest

Link study.
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INTRODUCTION

In response to the Challenger accident and subsequent reports by
governmental commissions [NRC, House Report] , NASA has expanded its risk
assessment studies from a completely qualitative Failure Modes and Effects
Analysis/Critical Items List (FMEA/CIL) to some quantitative investigations
including Probability Risk Assessment (PRA).

FMEA/CIL is basically a bottom-up approach. Individual components of a
system are analyzed. Their individual failure modes are determined and the
effects of each type of failure are investigated. On the basis of this analysis,
various critical categories are assigned to each failure mode of each
component. One shortcoming of the FMEA/CIL approach is that it does not
assign priorities. As Charles Harlan, director of the Safety, Reliability, and
Quality Assurance Directorate at NASA/JSC has noted, "There are many
criticality 1 items in a system like the Shuttle, or in your car for that matter, . .
How do you distinguish the very unlikely failure you can live with from the
likely ones you have to fix?” He further stated that "Our present system
doesn’t assess priorities, and we're goin? to modify that. We need a relative
ranking of the risk associated with each failure mode “[SPECTRUM]

Probability Risk Assessment addresses this shortcoming. In contradistinction
to FMEA/CIL, PRA is a top-down method in which possible failure modes of
the entire system are first identified. The possible ways this could occur are
enumerated and for each fault, chains of faults are traced out until eventually
one arrives at the failure of a single component or a human error. A
downward branching fault tree is constructed in which probabilities are
assigned to the basic faults and then the total probability of various failure
paths can be computed. In this way their relative contributions to the total
risk are assessed.

NASA's historical preference for a qualitative approach to reliability and
shunning of quantitative procedures is documented in the June 1989 special
issue on risk analysis in SPECTRUM. As noted by the SPECTRUM editors:

During the Apollo days NASA contracted with General
Electric to do a PRA to determine the chances of landing
a man on the moon and safely returning him to earth.
When the study indicated the probability of success was
less than five percent, NASA decided the study

~would do “irreparable harm...” and they "studiously stayed
away from [numerical risk assessment] as a result.

Will Willoughby, NASA head of Reliability and Safety at the time, added:
"That's when we threw all that garbage out and got down to
work... Statistics don’t count for anything . They have no placein
engineering anywhere.”[SPECTRUM]

As a result, NASA adapted qualitative failure modes and effects analysis
(FMEA).
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The SPECTRUM article further pointed out that in the 1970’s and early 1980’s,
because of political realities it became necessary for NASA to show that the
Shuttle would be “cheap and routine, rather than expensive and risky.” Such
pressures led to examples where data was disregarded and arbitrary
assignments of risk levels were made.

The deliberate decision by NASA to forgo quantitative (probabilistic) risk
analyses determined the type of data NASA gecided to collect. For example
no elapsed times were originally recorded for components on the shuttle. The
failure to record various kinds of data, which was recoverable, precluded
many forms of statistical analyses from even being considered.

After the Challenger accident the National Research Council (NRC) and the
House of Representative committee on Science and Technology issued
reports, in addition to the Presidential Commission [Roger’s Report]. The
Congressional report noted that:

Without some means of estimating the
probability of failure of the various
elements, it is not clear how NASA can
focus its attention and resources as
effectively as possible on the most
critical systems.

In a similar vein the NRC noted:

The Committee views the NASA/CIL
waiver decision making process as being
subjective with little in the way of
formal and consistent criteria for
approval or rejection of waivers.
Waiver decisions appear to be driven
almost exclusively by the design based
FMEA/CIL retention rationale rather
than being based on an integrated
assessment of all inputs to risk
management.

In response to the Challenger accident and these reports, NASA is now
changing in favor of a “willingness to explore other things” [SPECTRUM].
NASA has contracted two PRA pilot projects and has developed workshops to
train engineers and others in quantitative risk assessment techniques.

One Approach

In this spirit, Dr. Richard Heydorn presented lectures on quantitative methods
to the Vehicle Reliability Branch at the request of branch chief, Malcolm
Himel. Asan outgrowth, the Extended Duration Orbiter - Weakest Link study
is being developed. Three avionics subsystems and one with mechanical
components, the freon coolant loop, have been identified as posing potential
problems to keeping the Orbiter in space for long periods of time. The intent
of the study is to devise a standard methodology for constructing



system reliability diagrams and identifying what data is needed and/or
potentially available. The data will then be utilized in Bayesian probability
models to estimate reliabilities and consequently identify any significant
problem subsystems.

Classical statistical methods are not suitable for many NASA problems. At
NASA, data records are often sparse, incomplete or in a form not amenable to
classical confidence estimates. Also, since problem-identification-problem-
correction is employed throughout the operating lifetime of many NASA
systems, the usefulness of failure history data is greatly compromised.
Bayesian analysis addresses such concerns since it allows for the insertion of
informed opinions instead of/or in addition to observational data on failures.

PRELIMINARY WORK ON A BAYESIAN APPROACH TO RELIABILITY AND
CONFIDENCE

Prior to my arrival to take part in the NASA Summer Faculty Fellow program,
Dr. Heydorn had begun Bayesian investigations into reliability by modeling
the reliability of a single component (e.g. valve, piston, computer chip,
etc...)assuming a constant rate of failure. The reliability of a system of
components can then be modeled using the laws of probability.

The Bayesian approach was selected because of the shortcomings of classical
statistical analysis with NASA data as pointed out earlier. In particular, in
cases with very few data values on failures, classical confidence intervals for
the reliability may be larger than the unit interval [0,1] and hence quite
meaningless. Similarly since classical estimates of reliability depend on the
failure history sample, an extreme but not uncommon situation in which no
failures are recorded can lead one to blindly believe that we can conclude a
high confidence in high reliability. The Bayesian approach appears to be
much more fruitful in t?‘nat it can address such data difficulties.

In the case where the failure rate 1\ is constant, under the fairly general
assumptions that (a) the number of failures in any two disjoint time intervals
are independent and (b) the distribution of the number of failures in any time
interval depends only on the interval length, it follows that for t>0, N(t) the
number of failures from time 0 to t is a random variable defined on a
probability space (3, . N{w,t) has a Poisson probability distribution with

Pr(N(t) = n) = ((at)n/nl)e-t (1)

For this process let x(w,t) = 1 if N(w,t) = 0 andletx(w,t) = 0 if N(w,t)>0.
The reliability function is then defined as:

R(L) = Pr(x(t) = 1) = P(N(t) = 0) = e-ut (2)
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Note that the reliability is just the probability that the component is still
operating after time t (i.e. it has not failed on the interval (0,t]).Note that in
this case the reliability function is exponential.

Assuming that a component was observed (or tested) over a period of time
length T and was seen to have failed n times, a logical question to ask is

"What is the probability that after some
additional time interval of length t, the
component will not have failed again?”

Since we know the component starts in an operating state and since the
events {x(t) = 1} and {N(t) = n} occur in disjoint time intervals, the Poisson
assumption (a) shows that

Prix(t) = 1IN(T) = n] = Pr[x(t) = 1], (3)

i.e. the failure history has no direct bearing on the reliability when we assume
the componentstarts in an operating state.

Heydorn has pointed out the inadequacies of classical statistical analysis, as
noted earlier in this paper. He has shown that the Bayesian estimator of the
reliability, given that n failures were recorded in an earlier time interval of
length T, and assuming a uniform prior distribution of A on (0,¢] and then
letting ¢ ~ =, isgiven by:

E(RA ()] M(T) = n) = P(x(t) = LIN(T) = n) = 1/(L + t/T)n+l (4)
The expression

ERAMIN(T) = n) = 1/(1 +t/T)n+1 (5)

is the key to his discussion and allows him to make probability statements -

about the reliability of the component. Heydorn also has shown that the
Bayesian estimator for the reliability given by expression (4) is a consistent
estimator for the true reliability R(t). Exploiting (5) Heydorn has obtained
expressions for the probability that the reliability of a component (and of a
system of components) lies in specified intervals of values between 0 and 1.
He notes that this formulation addresses some of the data problems with
classical statistical analysis. For example if no failures were recorded in time T
(not an uncommon occurrence when testing highly reliable components)
expression (5) gives

E(RA (1) IN(T) = 0) = 1/(1 + t/T) (6)

and Heydorn is able to exploit this expression , while in the classical case no
such expression is possible! Heydorn also indicates how the Bayesian
approach can be used to incorporate expert opinion into the probabilistic
process even when no historical data may be available. Essentially the
uniform prior on (0,=) is in some sense the “least informative” prior since it
assumes that every positive value of X is equally likely of being the "true”



value of the constant rate A. Given additional expert opinion, it is often
possible to incorporate that opinion into the choice of an alternate prior
distribution for A. Heydorn illustrates this with an example and shows how a
system containing a mixture of components, some with failure data and
others will only expert opinions on the failure mechanisms, can be
probabilistically analyzed.

DISCUSSION

For these summer investigations, the first objective was to extend the results
to the more general case where the failure rate (hazard function) is non-
constant. A good model for a non-constant hazard function is the Weibull
distribution, “W(\,p), which can model both “break in” and "wear out”
failure conditions in a system and contains the constant failure rate model as a
special case. The discussion that follows considers the following formulation
of the Weibull distribution.

B
F(t,1,0) =AB b1 e-\t
R(t,A,B)
h(t,A,B)

B
e -At ABt>0

AD t8 -1 (7)

Note that in the special case when B = 1 the hazard function reduces to the
constant A and the reliability function is the exponential function, i.e. one has
the constant failure rate model considered earlier.

In Weibul! reliability analysis it is often the case that the value of the shape
parameter B is known. In fact the literature sharply divides into the case
where B isknown and only the scale parameter A is unknown and the more
general case where both parameters are unknown. In the case where f§ is
known considerable analysis has occurred [Martz].

If one assumes a non-constant intensity function h(t,A,B) = A t8-1, it is
easy to show under assumptions similar to (a) and (b) given earlier that the
probability of n failures occurring by time T is given by
B ,
PIN(T) = n] = (e-\T (ATP)n)/n! (8)
This is usually referred to as the nonhomogeneous Poisson process.
| SPECIAL CASE
Now for the Weibull model with B known, the Bayesian estimate for the
reliability can be calculated (assuming A has a uniform prior and the limiting
processis carried out as before) and one sees that
E(Ry(t) | N(T)=n) = P[x(t) = LIN(T)=n] = 1/(1 + (t/T)F)»"1 (9)

2-7



In this special case the Bayesian estimate is seen to be a consistent estimator of
the reliability function (7). With expression (8) one is able to make probability
statements about the reliability of a component (and system) as Heydorn did
for the exponential case for situations that classical reliability theory can not
address. The inclusion of expert opinion into the process can also proceed as
was indicated earlier.

GENERAL CASE

In the more general case where both p and A are unknown, we assume they
are unknown values of random variables that must be estimated. We assume
prior uniform distribution on (0,¢4\] and (0,¢3] and eventually take the
limiting values so that A and f may take on any nonnegative values. In a
sense, these are the least informative priors since they assume that every
possible value for X (and B) is equally likely of occurring i.e. we have no
additional information on the true valuesof A and p.

Preliminary investigations indicated that N(T), the number of failures
recorded in time T, is not sufficient to ensure that the corresponding Bayesian
estimate of reliability is a consistent estimator of the true reliability.

It is well known [Bain, Finklestein, et al.] that if T1,. . ..Tn denote the first n

successive times of failure of a Weibull process (T1< T2... < Tp) then the
likelihood function is given by: SO - S
F(t1se-.tnsA,p) = ANBN ( 1T ti)B-le-Mto)? | (10)

The Bayesian Estimator of reliability is this case (for uniform priors on (0,¢\]
(0,¢pland taking limits) reduces to:

E[R\(t) { T]. = tl,----Tn=tn] = P[X(t) = 1'T1 = tl,.--Tn=tn]
= [nltaII(tg/tp] ! limit go. ( Bre-Blnlt, (L /)] dB
n! / [1 + (t/tg)Bn+1 (11)

While expression (11) does not have a closed form in general, a few
observations are in order:

(a) The form of (11) indicates that thand 1 ti together carry all the
information necessary to obtain the Bayesian estimate of reliability. We note
that in the classical analysis tpand I ti arejointsufficient statistics [Bain].

(b)  The Bayesian estimate (11) is a consistent estimator for R(t), the true
reliability. In fact, we conjecture that an even more general result holds.

Namely, under some rather general conditions we believe it is possible to
show that for any estimator © of 6,

E[®1x1, . xn] ~B(asn =+ =) (12)
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(c) Inthe special case that t = tn, i.e. one wants to estimate the reliability
after time t in the future that is equal to the total elapsed time for the first n
past failures, expression (11) reduces to

E[Ry(t) | T1 = ti..... Tn = tn] = (1/2)n+l (13)

With this closed form one can again make probability statements about the
reliability of a component, conditioned on the failure times t1,, . tn, In
particular the probability that this system has not failed after t units of time
given that it failed n times over a period of time t in the pastis (1/2)n+1. For
example if one had data on 1 failure after 10,000 hours of operation then the
probability that the component (starting from an operating state) will not fail
during the next 10,000 hours is (1/2)2 = 1/4 = .25. Expression (13) suggests
that if no failures were encountered in t units of time then the probability
that there will be no failures in a future time interval of t units (starting from
an operating state) would be 1/2 = .50. In some sense there is a 50/50 chance
of the component failing in the next t units of time if it has not failed in a
prior t units of time.

Again with expression (13), using the laws of probability it is possible to
obtain expressions for the probability that the reliability of a component(ora
system of components) liesin a specified range of values between 0 and 1.

CONCLUSION

This report outlined the historical evolution of NASA's interest is quantitative
measures of reliability assessment. The introduction of some quantitative
methodologies into the Vehicle Reliability Branch of the SR&QA Division at
JSC was noted along with the development of the Extended Orbiter Duration
- Weakest Link study which will utilize quantitative tools for a Bayesian
statistical analysis.

Extending the earlier work of my NASA sponsor, Richard Heydorn, we have
been able to produce a consistent Bayesian estimate for the reliability of a
component and hence by a simple extension for a system of components in
some cases where the rate of failure is not constant but varies over time.
Mechanical systems in general have this property since the reliability usually
decreases markedly as the parts degrade over time. While we have been able
to reduce the Bayesian estimator to a simple closed form for a large class of
such systems, the form for the most general case needs to be attacked by the
computer. Once a table is generated for this form, we will have a numerical
form for the general solution. With this, the corresponding probability
statements about the reliability of a system can be made in the most general
setting. Note that the utilization of uniform Bayesian priors represent a
"worst case” scenario in the sense that as we incorporate more expert opinion
into the model we will be able to improve the strength of the probability
calculations.
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APPENDIX
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